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Transformation by Walsh functions is a 
technique useful for uncovering the interactions 
among the daily, weekly, and seasonal cycles 
often present in societal data. The structural 
and sampling properties needed for interpreta- 
tion are simple, the former because Walsh func- 
tions are easy to visualize, the latter because 
the normal approximation applies whenever the 
total number of events is large. This paper 
demonstrates these properties including their 
extension multivariate point processes. This 
technique is illustrated by applying it to a 
series of robberies. 

1. INTRODUCTION 
For many series of events, the rate of 

occurrence is modulated by periodic phenomena of 
known frequency and also non -periodic phenomena. 
Robberies are one illustration. Although the 
frequencies are known, the effects on the rate 
of occurrence of the various phenomena are 
neither additive nor multiplicative but unknown. 
In other words, the rate function changes from 
period to period under influences of longer - 
period phenomena and non - periodic phenomena, 
influences that interact in an unknown way. 
For example, the weekday rate function for 
robberies differs from the weekend rate function, 
the winter from the summer. That the rate of 
recurrence is small also motivates the analysis to 
be discussed. 

The data being considered can be regarded as 
a point process with interesting non -stationary 
characteristics. Lewis [8] illustrates point - 
process methods with admissions to a hospital 
emergency roam. Some point process methods 
[3, 7, 8] are appropriate, but others [2, 4], 
meant for stationary point processes, are not. 
The data can also be regarded as a sparse 
contingency table with interesting interactions. 
For example, the table might have as dimensions 
an appropriate division of the day, day of the 
week, and week of the year. Thus, contingency 
table methods [1, 6] are appropriate. 

Properly applied, transformation by Walsh 
functions shows the periodicities, the interac- 
tions, and how rapidly the rate function changes 
within periods. As discussed below, the Walsh 
transform must be matched to the frequencies 
present. Some Walsh coefficients indicate 
periodicities because they are averages over 
all periods of a function of the counts within 
a period. Other Walsh coefficients indicate 
interactions because they are differences 
between periods of a function of the counts 
within a period. Further, Walsh coefficients 
indicate behavior of the rate function within 
periods because they are based on successively 
finer divisions of the time scale. 
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Thus, the Walsh transform gives at once 

coefficients that contraindicate smoothing by 
combining cells(using a courser division of the 
interval)and coefficients that contraindicate 
smoothing by ignoring interactions. In the 
analysis of sparse tables, comparison of these 
types of smoothing is important. 

One further type of smoothing should be 
considered, combining events that are somewhat 
different. Extension of the Walsh -transform 
technique to this case is indicated. 

Because Walsh functions have a range of 
+1, each Walsh coefficient is the difference 
between numbers of events in a two -way parti- 
tion of the total interval. Consequently, the 
easiest interpretation of the Walsh coefficients 
is in terms of an additive model. When compared 
to multiplicative models, additive models have 
disadvantages [1]. However, because the co- 

efficients are differences of counts, the normal 
approximation applies regardless of the cell 
size. Thus, the distribution theory for Walsh 
coefficients is simple. 

The proper application of the Walsh trans- 
form to most data requires adding to the series 
periods that contain no events. For example, 
an eighth day must be added to the week and 
twelve weeks must be added to the year. These 

additions are needed because the Walsh trans- 
form only matches frequencies that are a power 
of two times some lowest frequency. Because 
of these additions, some of the Walsh coeffi- 
cients must be adjusted so they can be compared 
to zero. 

The Walsh transform is like analysis of 
variance with orthogonal contrasts. These 
techniques are identical if the ratios of the 
cycle lengths are a power of two, as required for 
proper application of the Walsh transform. 
Alternatively, orthogonal contrasts could have 
been used without adding zeros. This latter 
approach does not give uncorrelated coefficients 
as is usually the case in analysis of variance 
because the process is nonhomogeneous. Further, 
the results of the latter approach are not as 

easy to interpret because the resulting coeffi- 
cients are not simple differences of counts. 

The Walsh transform has attracted attention 
in signal processing because it is easily 
computed, requiring only n log2 n additions for 
an n -point transform [ 9, 10, 11] . 

2. A SERIES OF ROBBERIES 
The data that motivated this paper are 

descriptions of robberies (the taking of some- 
thing from a person by force or threat of force) 
and purse snatchings that occurred in the Bronx 
during 1969 and 1970. These descriptions were 
recorded on a special form by the New York City 
Police. The recording was ordered and carefully 
supervised by the commander of the Bronx, who 
used the data for operational purposes. Beside 
time and place of occurrence, these descriptions 
include characteristics of the victims, perpetra- 
tors, and circumstances of the crime. Many 
series of events recorded by institutions have 
similar statistical properties. 



For these data, the shapes of the daily, 
weekly, and seasonal patterns, as well as how 
they vary with event characteristics, are of 
interest. However, the intent of this paper is 
not to present a picture of robbery but only to 

illustrate the Walsh transform. The incidents 

used for illustration are single -victim, non- 

commercial incidents in which the victims were 
males between the ages of 18 and 52. The inter- 

val examined is the 52 week period from Sunday, 
July 27, 1969 to. Saturday, July 25, 1970. This 

interval is chosen so that the first and fourth 
quarters are in daylight saving time and the 
second and third quarters are in standard time. 

In this application of the Walsh transform, 
the day is divided into eight subintervals: 
1:01 a.m. to 9:00 a.m., 9:01 a.m. to 1:00 p.m., 
1:01 p.m. to 3:15 p.m., 3:16 p.m. to 5:20 p.m., 
5:21 p.m. to 6:45 p.m., 6:46 p.m. to 8:30 p.m., 
8:31 p.m. to 10 :15 p.m., and 10:16 p.m. to 
1:00 a.m. The unequal subintervals are justified 
because the shortest period expected in robbery 
data is one day. Thus, the time scale for days 
can be replaced by any monotone function of time. 
The eight subintervals are chosen to equalize the 
number of single -victim non -commercial incidents 
in each subinterval. Because the data contain 
ties due to rounding of event times, this cannot 
be done exactly. Since the equalization is for 

victims of all sexes and ages, equalization for 
a particular victim sex -age category such as 
adult males is not expected. 

To meet the requirement that the ratios of 
the periods must be a power of two, a day with 
zero events is added to each week and three 

weeks with zero events are added to each 

quarter. The zero -event day follows Sunday, 

becoming the second day of the week. The 

three zero -event weeks follow the last week 

of the quarter. Including the divisions of 

the day, this produces 4096 (212) subintervals. 

The Walsh transform is applied to the counts 
in these subintervals. 

Because of the added zero -event sub- inter- 
vals, some comparisons computed by the Walsh 
transform are between subintervals of unequal 
length. The Walsh coefficients that compare 
weeks within a quarter compare either eight 
weeks to five weeks or seven weeks to six 
weeks. Thus, they will not be zero when the 
weeks of the quarter are the same. Similarly, 

the Walsh coefficients that compare days within 
a week compare four days to three days. Thus, 

they will not be zero when the seven days of the 
week are all the same. For example, the Walsh 
coefficient that is the difference between the 
number of events on Sunday, Friday, and Saturday 
and the number on Monday, Tuesday, Wednesday, 
and Thursday does not account for the unequal 
number of days in the two groups. 

The proper adjustment is normalization by 
the lengths of the subintervals compared. 
Walsh coefficients can be obtained in four steps: 
by evaluating for each day a function of the 
occurrence times in that day, by evaluating for 
each week a function of the daily values obtained 
for that week, by evaluating for each quarter a 
function of the weekly values obtained for that 
quarter, and by evaluating for the year a 
function of the quarterly values obtained. 
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Each of these functions is either a sum of the 

values for the next shortest period or a 
difference of two sums of the values. Adjust- 

ment for the added zero -event subintervals 
is needed when a difference of sums of daily 
or weekly values is involved. The proper 
adjustment is division of each sum by the 

number of actual days or weeks it contains. In 

the above example, the number of events occurring 

on Sunday, Friday, and Saturday should be divided 
by three and the number in the second group by 

four. This is equivalent to creating an adjusted 
coefficient by replacing the zero -event subinter- 
vals with average days or average weeks and then 
transforming. This second procedure is identical 
to the procedure actually followed. 

The Walsh transform applied to the robbery 
data is the one described by Manz [9]. The 42 
coefficients that have the largest adjusted 
values are given in Table 1. The coefficient 
numbers (which start with zero) are given in 
both decimal and binary form. Next, the Walsh 
coefficients obtained with the added zero -event 
subintervals are given. Finally, the adjusted 

Table 1. The Largest Coefficients 
in the Robbery Data. 

Coefficient Number Walsh Adjusted 
Decimal Binary Coefficient Coefficient 

o o 2135 - 
1 1 -447 - 

loo 157 178 
11 1 011 173 152 

128 10 000 000 -81 224 

255 11 111 111 -455 -150 
639 1 001 111 111 161 156 
876 1 101 101 100 -163 -153 

1024 10 000 000 000 729 
1025 10 000 000 001 -169 
1026 10 000 000 010 245 - 

1152 10 010 000 000 133 237 
1160 10 010 001 000 -199 -183 
1280 10 100 000 000 249 145 
1284 10 100 000 100 135 152 
1440 10 110 100 000 -129 -140 
1663 11 001 111 111 195 171 
1919 11 101 111 111 127 151 
1961 11 110 101 001 -139 -144 
2014 11 111 011 110 143 145 
2047 11 111 111 111 167 
2048 loo 000 000 000 529 
2049 100 000 000 001 -225 - 

2052 100 000 000 100 123 142 
2176 100 010 000 000 193 269 
2508 100 001 100 185 174 
2626 101 001 000 010 167 168 
2680 101 001 111 000 -89 -140 
2687 101 001 111 111 187 141 
2695 101 010 000 111 169 157 
2696 101 010 001 000 153 155 
2815 101 111 111 195 149 
2852 101 100 100 100 157 145 
2943 101 101 111 115 161 
3071 111 111 319 
3072 110 000 000 000 591 
3073 110 000 000 001 -175 - 

3074 110 000 000 010 175 
3200 110 010 000 000 171 255 
3563 110 111 101 -143 -145 

3931 101 -139 -147 
4095 111 111 111 111 217 



Figure 1. The Weekly and 
Seasonal Variation in the 
Daily Pattern. 
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coefficients are given for those Walsh coeffi- 
cients that compare subintervals of unequal 
length. Coefficient 0 is not a difference but 
the total number of incidents. 

Each Walsh coefficient (except 0) is the 
difference between two counts that can be 
considered independent Poisson random variables. 
Thus, the variance of each Walsh coefficient is 
estimated by the total count, 2135. Since the 
two counts are large enough for the normal 
approximation to apply, three standard devia- 
tions (which equals 139) has its usual meaning 
as a standard of comparison. Estimates of the 
variance of the adjusted coefficients vary from 
coefficient to coefficient. However, for the 
purpose of choosing the significant coeffi- 
cients, the variances of the adjusted coeffi- 
cients are nearly the same as those of the Walsh 
coefficients. 

Consider the meaning of the coefficients in 
Table 1. Beside coefficient 0, the largest is 

coefficient 1024. This coefficient is the 
number of events that occurred in the first two 
and the last two subintervals of the day minus 
the number in the middle four subintervals. It 

shows that more incidents occur between 
8:31 p.m. and 1:00 p.m. the next day than in the 
other part of the day. Since the subintervals 
are chosen to equalize the rate of occurrence, 
it follows that the reverse is true for victims 
in other sex -age categories. The other coeffi- 
cients in Table 1 that are sums over all days 
of differences between parts of the day are 
coefficients 2047, 2048, 3071, 3072, and 4095. 

The coefficients in Table 1 that show the 
variation of the daily pattern from quarter to 
quarter are coefficients 1, 1025, 1026, 2049, 
3073, and 3074. Coefficient 1 compares the 

MON TUE WED 
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first half of the total interval (which ends 
January 24, 1970) with the second half. It 
shows an upward trend. The next largest in this 
group is coefficient 1026. It is a comparison 
between the middle half of the year and the 
first and last quarters. The quantities 
compared are sums over the two parts of the 
year of a function of the daily pattern. This 
function is the first two and last two sub- 
intervals of the day minus the middle four 
subintervals. It shows that the predominance 
of attacks between 8:31 p.m. and 1:00 p.m. the 
next day is more pronounced during daylight 
saving time. 

The coefficients in Table 1 that show the 
variation of the daily pattern within the week 
are 128, 255, 639, 1152, 1280, 1663, 1919, 
2176, 2687, 2815, 2943, and 3200. These coeffi- 
cients are affected by the added zero -event 
subintervals. Coefficient 128 is the number of 
events on Sundays, Fridays, and Saturdays minus 
the number on Mondays, Tuesdays, Wednesdays, 
and Thursdays. This difference has a value of 
-81. Since each day of the week has an average 
of 305 incidents, the adjusted coefficient is 
224. It shows that on a per day basis weekends 
have more events than weekdays. 

Retransforming some of the Walsh 
coefficients provides an informative 
display of the data. The first graph 
in Figure 1 shows that the first and last sub- 
intervals of the day predominate. As noted 
above, coefficient 1024 reflects this. The 

second and third graphs are additive corrections 
to the first. The second shows the correction 
to the daily pattern for eight divisions of the 
year. As shown by coefficients 1025 and 1026, 
the large percentage of incidents in the first 



and last periods of the day is more pronounced 
in the last quarter of the year. The upward 
trend is also evident. The third graph shows 
the corrections by day of week. As would have 
been noted if coefficient 1152 had been discuss- 
ed, the predominance of the first and last 
periods of the day is more pronounced on week- 
ends. 

Figure 1 does not display all the coeffi- 
cients in Table 1. Some, such as coefficient 

11, may indicate the need for finer graduation 
of the season. Others, such as coefficients 

1284, 2626, 2680, and 2695, may indicate that 
the weekly pattern varies with season. The 

others may have a societal explanation that has 
not yet been uncovered. On the other hand, 

they may be large only by chance. 
3. APPLYING THE WALSH TRANSFORM 

To apply the Walsh transform, simple 

methods for interpreting the coefficients are 

needed. This section provides such methods, 
both an algorithm for constructing any Walsh 
function and the distributional properties of 

the coefficients. Next, application of the 
Walsh transform to multivariate point processes 
is discussed. Finally, the Walsh transform 
is compared, in terms of simplicity of inter- 

pretation, to the log -linear analysis of contin- 
gency tables and to spectral analysis. 

For visualizing Walsh functions, defining 
them by specifying their sign changes is 

convenient. This is possible because the range 
of Walsh functions is +1. Denote the kth value 
of the ith Walsh function by w(i,k), 0 <i, k 
<2M -1. The construction can be thought of as 
starting at k = 0 and proceeding to larger 
values of k. The value of w(i3O) is +1. Let 

the binary representation of i be 
M -1 M -2 ... 

i0 (i = i 2P), and express k as j2M for 

some odd integer j. The ith Walsh function 

changes sign between k -1 and k if and only if 
i = 1. Thus, i determines whether the sign 
changes between the first and last half of the 
domain; i determines whether the sign changes 
between t2Ie first and second quarters and be- 
tween the third and fourth quarters; etc. 

This definition gives the Walsh functions 
in an order different from the usual one 
[10, 11]. The ith function has i sign changes. 
Thus, the Walsh functions are ordered by their 
sequency [11], that is, by the number of 
sign changes they have. A fast algorithm 
that applies the Walsh functions in sequency 
order is given by Manz [9]. Note that the 

matrix with elements w(i,k) is a symmetric 
HakeTard matrix. If it is multiplied by 
2 , it is orthogonal. 

Separate sets of binary digits specify 
divisions within and between the periods 
present. For the robbery data, the first 

three digits ill in specify divisions 

within the day; the second three digits 
i8 i6 specify divisions between days with- 

in the week; the next four digits i4 i2 

specify divisions between weeks within the 

quarter; and the last two digits i 

specify divisions between quarters. The 

coefficients corresponding to the margins 
(those that could have been obtained by 
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superimposing the data in successive periods 
of one of the cycles present) have digits with 
the following property. The digits in the 

set that specifies the divisions of the 

period, say i i , are followed by 
digits equal last in the set, i = 

-1 = 
M 

A 2 -point Walsh transform can be 
thought of as a -point transform of a 
2M -point transform, where M' + M" M. 

This property is the basis for the fast al- 
gorithm. It is also useful in the inter- 
pretation of the Walsh coefficients as com- 
parisons. Let n(kd,kw,kq,ky) be the number 

of events in subinterval kd of the day, day kw 

of the week, week k of the quarter, and quarter 

of the year. Let w(M)(p,p') (0 p,p' <2M -1) 

be the values of the 2M -point Walsh functions. 

The following four steps produce Walsh co- 

efficient i, where i = id29 + + ig22+ iy: 

= 

(3.1) 

i 
iw' if id even 

w 
7 if id odd, 

(3.2) 

kw(4)(iq',k) fw(id,iw,k, ÿ), 

odd, q 
w 

i ' if i even 
q w 

i = 

15 ig' if i (3.3) 

f(idwqy) = kw(2)(iy',k) 

i if i even 
i = y 

3-i ' if i odd. (3.4) 

If each of these equations were further de- 
composed into 2 -point transforms, the result 
would be Manz's algorithm [9]. 

The adjustment for the added zero -event 
subintervals can now be seen. Consider 

(3.2) first. No adjustment is needed if f 
is the sum off (the case i ' 0). Other- 
wise, the proper comparison is given by 

gw(id,iw,kq,ky) = fw(id,iw,kgky) + 

/7) (3.5) 

This is equivalent to normalizing by the num- 

ber of days in the subintervals being compared. 
Since the adjustment for the added weeks 

is similar, the equations for the adjusted 

coefficients equivalent to (3.1) - (3.4) are 

easily obtained. Let 



= 

/7 if iw' 

ifiw ' 

(3.6) 

+ w(4)(ig',14) 

b(iq') + w(4)(iq',15)]/13 if 

if = O. 

(3.7) 

Equation (3.1) remains the same. Equations 
(3.2) - (3.4) become 

= 

+ a(iw')] fd(id,k,kq,ky), (3.8) 

+ b(iq')] (3.9) 

g (i w(2)(i (i ,k), 
d' w' q' y k y q d' w q 

(3.10) 

where the relation between and 

(id,iw',iq',iy') is given in (3.2) - (3.4). 

The adjusted coefficients can be computed 
from the Walsh coefficients. 

In order to derive distributional proper- 
ties for the Walsh coefficients, the series of 
events is modeled as a nonhomogeneous Poisson 
process. For the type of series being dis- 
cussed, this assumption seems reasonable. The 

inhomogeneity is the most pronounced feature 
of such series, and the nonhomogeneous Poisson 
process is the simplest model with this 
feature. Note that adding zero -event sub- 
intervals does not make this model invalid. 

The distribution theory for Walsh co- 
efficients is simple as long as the number 
of coefficients considered simultaneously is 
small enough that the normal approximation 
applies. Approximate normality after trans- 
formation is a familiar property, occurring, 
for example, in ordinary time series analysis. 
Let 
k = kd29 + kw26 + kg22 + 

En(kd,kw,kq,ky) = u(kd,kw,kq,ky) = 

= f (3.11) 

The variance of the Walsh coefficients is 

var fi 
= Lkuk (3.12) 

Since w(i',k) w(i ",k) w(i,k), where i is the 
dyadic product of i' and i" (the binary digit 
i equals i + i " (mod 2)), the covariance of 
cEefficientE i' aEd i" is 

cov (fi fi") = Lk w(i,k)uk. (3.13) 

This can be estimated by the ith Walsh 
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coefficient. 
Consider the statistical problem of 

separating the adjusted coefficients that 
are not zero from those that are. Both because 
of the nature of the data and because of the 
adjustments for the added subintervals, 
conditional tests are appropriate. One 
approach is as follows: Tests for the co- 
efficients that involve neither comparisons 
among days within a week (i ' 0) nor 
comparisons among weeks within a quarter 
(i = 0) are conditioned only by the total 
number of events, n(+,+, +,+). Tests for co- 

efficients for which iw' 0 and iq' 0 and 

those for which 0 and i 0 are 

conditioned on n(kd, +,ky) 

( = n(kd,j,k,ky)). Tests -for the co- 

efficients for which 0 and i' 0 

are conditioned on +,ky). Even with 

the conditioning, the adjusted coefficients 

are approximately normal. Thus, given the 

variances, thresholds high enough to prevent 

many zero coefficients from being classified 
non -zero can be set using the Bonferroni 
inequality [6]. It can be shown that the 

variances of the adjusted coefficients in 

Table 1 are all nearly the same. 
Since the Walsh transform fits an additive 

model to the data, extension to multivariate 
point processes by means of an additive model 

seems reasonable. However, this is not 

necessary. A particular Walsh coefficient 
can be compared among event types using a 

multiplicative model. Thus, the question of 

whether several rates of occurrence are pro- 

portional can be answered. If the number of 

event types is not too large, the distributional 

properties are simplified in the same way as in 

the univariate case. 
For example, consider events of two types. 

Let the Walsh coefficients be f.' and ", 

respectively, and let f. f.' f. ". 

The totals for each event type are fn' and 

The comparison appropriate to proportionality 

of the rates of occurrence is /f0' - 

fi " /f0 ". The statistic 

f f0 f0 ' 

2 

(3.14) 

is the chi -square statistic usually obtained 

for a fourfold table. This can be seen by 
letting = n11 - n12 and 

= n21 - n22, 
where n,11, n12, n21, 

n22 are counts. The chi - 
square approximation for (3.14) does not 

require dividing the point process into sub- 
intervals with adequately large numbers of 
events. Thus, as in the univariate case, the 

Walsh transform allows large -sample approxima- 
tions to be applied. The hypothesis that 
overall the two rates are proportional can be 
tested by comparing the largest with a 
threshold provided by the Bonferroni in- 
equality [6]. 



Many authors have concluded on the basis 
of structural properties that multiplicative 
models for contingency tables are superior to 
additive ones [1, 5]. In particular, the fact 
that the hierarchy of multiplicative models 
contains independence and conditional inde- 
pendence is an important advantage. For 
example, it can be argued that the model fit 
to the robbery data in Figure 1, which is an 
additive composition of the daily -weekly and 
daily -seasonal marginals, is not as helpful 
for interpretation as conditional independence, 
the analogous multiplicative model, would have 
been. Further, there are problems for which 
multiplicative models are unavoidable because 
testing a particular multiplicative model is 
suggested a priori. 

For the problem considered in this paper, 
the arguments for multiplicative models do not 
seem important enough to outweigh the advan- 
tages of the Walsh transform. In this paper, 
the model is a device for finding irregulari- 
ties that are either so interesting or so large 
that they should not be distorted by the 
smoothing. For this purpose, the fact that 
the hierarchy of Walsh -transform models 
provides variability in the sizes of the cells 
is important. For example, the choice of how 
many divisions are needed to represent the 
seasonal variation in the robbery data is 
included in the model building. 

The advantage of the Walsh transform is 
the simplicity of its distributional pro- 
perties. Limitations on the sparseness 
permissible with the Pearson chi -square are 
reviewed by Haberman [6]. Even less is known 
about the distributional properties of the 
likelihood chi -square when the expected 
number in each cell is small. Sparseness is 
an important property of the robbery data 
since the 2912 cells contain 1555 zeros, 
863 ones, 321 twos, 109 threes, 35 fours, 

18 fives, 7 sixes, 2 sevens, 1 eight, and 
1 nine. 

The guidance provided by the Walsh 
transform is needed in the analysis of the 
counting function of the process that results 
from superimposing several days. This analysis 

is important when the variation during the day 

is large as it is for the robbery data. This 

counting function, which can be treated as an 
empirical distribution function, might show 
sharp changes in the rate function that can be 

related to other phenomena. In such an 

analysis, the Walsh coefficients provide 
guidance on what days can be superimposed 
without risking a severely distorted result. 

Spectral analysis of point processes also 
fits an additive model [7]. As mentioned 
above, this technique is needed for periodi- 
cities with unknown frequency. However, 
spectral analysis is not as suitable for 
assessing the interactions among periodicities 
as the Walsh transform. With spectral 
analysis, interactions must be detected in the 
spectrum by recognizing that the frequencies 
of some peaks are sums or differences of the 
frequencies of other peaks. Further, the form 

of the interaction is harder to visualize with 
spectral analysis. 

547 

These comparisons show that the Walsh 
transform lies between contingency table 
analysis and spectral analysis, modeling the 
interactions as in contingency table analysis 
and avoiding the problems of grouping the 
data as in spectral analysis. 
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